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Convenient and Regioselective Syntheses of 3,4-Disubstituted A3-Pyrrolin-2-one Derivatives
Starting from 2-Tosyl-3,4-Disubstituted Pyrroles
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3,4-Disubstituted A3-pyrrolin-2-ones were prepared in high yields via 5-tosyl-A3-
pyrrolin-2-ones (4) starting from 2-tosylpyrroles regioselectively. The compounds 4
were found to be useful intermediates for the preparation of a variety of A3-pyrrolin-2-
one derivatives. The reactions of 4 with various nucleophiles and active methylene

compounds bearing an appropriate leaving group are described.

The 3,4-disubstituted A3-pyrrolin-2-one derivatives are useful building blocks for the synthesis of
biologically important substances such as the chlorins!) and the pigment component of phytochrome.2) A
variety of methods for the synthesis of A3-pyrrolin-2-one derivatives have been so far reported, for instance, the
modification of the Paal-Knorr synthesis,33) intramolecular Horner-Emmons cyclization,3?) condensation of
acetoaminoketone with cyanoacetate,3¢) and reductive cyclization of the cyanohydrin derivatives of B-
ketoester.3d) In addition, direct structural transformation of substituted pyrroles to the corresponding A3-
pyrrolin-2-ones has been also studied. For example, 2-formyl-3-ethyl-4-methylpyrrole was oxidized by
hydrogen peroxide in pyridine to give A3-pyrrolin-2-ones concomitantly by the loss of the formyl group.#) Acid
hydrolysis of t-butyl 5-bromo-3(2-methoxycarbonylethyl)-4-methoxycarbonylmethylpyrrole-2-carboxylatel)
(Eq. 1) and 4-carboxyethyl-3-carboxymethyl-5-chloropyrrole-2-carboxylic acid3) (Eq. 2) was investigated.
However, neither chemical yield nor regioselectivity of them was satisfactory as shown in the following.
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We wish to report here a versatile method for the regioselective syntheses of A3-pyrrolin-2-ones 2 via 3,4-
disubstituted-5-(p-toluenesulfonyl=tosyl)-A3-pyrrolin-2-ones (4) starting from 2-tosyl-3,4-disubstituted
pyrroles 1, and the reactions of 4 with various nucleophiles and active methylene compounds bearing an
appropriate leaving group. Compound 1 was chosen as a starting substance because of its ready availability®)
and strong inductive effect of the sulfonyl group which is expected to make selective protonation possible on the
carbon of position 2.

Actually, when 1a was refluxed for 2 h in trifluoroacetic acid (TFA)-MeOH solution containing 10 equiv.

of water, the desired product 2a was obtained predominantly in good yield accompanied by the regioisomer 2a'
as shown below.
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Formation of 2a’ seemed to be due to the competitive initial protonation on both carbons of positions 2
and 5. In order to improve the regioselectivity, 1a was brominated with two equimolar amounts of
trimethylphenylammonium tribromide in CH2Cl at 0 °C to afford 3a in quantitative yield (Mp 199.0-201.5 °C
from AcOEt-hexane). Then, to a solution of 3a (100 mg, 0.25 mmol) in 5 ml of TFA was added 1 ml of water
and the reaction mixture was allowed to stand overnight at room temperature with stirring. After usual work up
and separation with a preparative TLC (SiO», hexane:AcOEt=1:1 V/V), only 4a was obtained in 92% yield (79
mg, Mp 160.0-160.5 °C from n-PrOH). Next, 4a (100 mg, 0.30 mmol) was treated with a small excess molar
amounts of NaBHy4 in 5 ml of EtOH at room temperature for 5 min to provide 2a in quantitative yield (56 mg,
Mp 181.0-182.5 °C from AcOEt-hexane). Similarly, 1b-d were transformed to 2b-d7) in high yields through
4b-d”7) without purification of the intermediary 3b-d as shown in the following scheme.
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1b : R=p-CH30CgH;- 4b : 84% 2b : quant.
1¢ : R=CH3CHy- 4c : 80% 2c : quant.
1d : R=CgHs5CH>CHo- 4d : 75% 2d : quant.

A plausible mechanism for regioselective hydrolysis of 3 toward 4 is shown below.
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The facile reduction of 4 with NaBH4 prompted us to examine the reaction of 4a with various
nucleophiles. Treatment of 4a with a large excess amounts of aqueous methylamine provided the formal
substitution product, 5-methylaminopyrrolinone 5a in excellent yield (Run 1 in Table 1). It is most likely that
the reaction proceeded through elimination and addition processes.8) Similarly, Sb-f were obtained under the
reaction conditions described in Table 1.

Furthermore, the reaction of 4a with the active methylene compound possessing a leaving group, such as
methanesulfonyl(=Ms)-, benzenesulfonyl or tosyl(=Ts) group and bromide, was carried out in the presence of
base. On treatment of 4a with 1 molar amount of MsCH7CN in the presence of 2.2 molar amounts of
DBU(1,8-diazabicylo[5.3.0Jundec-7-ene), 6a was obtained in high yield with predominance of Z-isomer
through the substitution reaction followed by the elimination of methanesulfinic acid (Run 1 in Table 2). In the
same way, the products 6b-d were obtained . The results are listed in Table 2.

As mentioned above, a general method for the regioselective synthesis of 3,4-disubstituted-A3-pyrrolin-2-
ones (2) could be established through 3,4~disubstitﬁted 5-tosyl-A3-pyrrolin-2-ones (4) starting from 2-tosyl-
3,4-disubstituted pyrroles (1), and it was found that the tosyl group of 4 is readily substituted by various
nucleophiles affording 5 or exomethylene derivatives 6 in the case of active methylene compounds having a

leaving group.
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Table 1. The Reaction of 4a with Various Nucleophiles

Run Nucleophile Conditions a)

(mol. amount) (mol. amount) Solvent Product™ Yield /%
1 NHyCH3z (20) r.t., 30 min CH3CN/HO0  5a 91b)
2 NH(CHg), (20) rt., 5 min CH3CN/H0  5b 96C)
3 CH3OH (excess) CH3ONa (1.0), reflux, 5 min CH30H 5¢ quant.d)
4 NaSCHj3 (5.0) rt., 5 min CH3CN/H0  5d 85€)
5 CHy(COsCHs)s (1.1)  CHzONa (2.2), reflux, 30 min CH3CN 5e 760
6 (CH3)2CuMgBr (2.0) -10°C,3 h Et,O 5f 459)
7 (CH3)oCuli (2.0) -20°C-r.t,1h Et,O 5f 55

a) All the products gave the satisfactory spectral data. b) Mp 242.0-243.0 °C (from AcOEt).
c) Mp 155.0-156.0 °C (from cyclohexane). d) Mp 134.5-135.0 °C (from hexane).

e) Mp 148.0-149.0 °C (from AcOEt-hexane). f) Mp 144.0-144.5 °C (from AcOEt-hexane).
g) Mp 141.0-142.0 °C (from cyclohexane).
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Table 2. The Reaction of 4a with Various Active Methylene Compounds

Run X Y  Condiions Yield/% Producta)  Haiool ,

/ E isomers

1 CH3SO2 CN rt,05h 75 6a 93 /7€)

2 CH3SO2 CN rt,35h 83 6a 72/28

3 Ts CN r.t.,, on 74 6a 89 /11

4 PhSO2 PhSO2 rt,05h 53 6b 91 /9d)

5 Ts COoEt rt.,on 63 6¢c 96 / 48)

6 Br CO2Et rt,1h 54f) 6¢c 97/3

7 Ts COPh rt,1h 82 6d 72 /289)

a) Allthe products gave the satisfactory spectral data. b) Stereochemistry of
the products was determined by NOE measurement. c) Z-isomer ; Mp 178.0-
180.0 °C (from AcOEt-hexane), E-isomer ; Mp 209.0-211.0 °C (from AcOEt-
hexane). d) Z-isomer ; Mp 152.0-153.0 °C (from EtOH). e) A mixture of E-and
Z-isomers ; Mp 81.0-82.0 °C (from hexane). f) 21% of ethy! p-toluenesulfonyl-
acetate was produced. g) Z-isomer ; Mp 178.0-179.0 °C (from benzene-hexane).

In the following paper, we report the Wittig type reaction of 4a prepared in the present work with various
aldehydes in the presence of PBusz and DBU affording the corresponding 5-exomethylene compounds in good
yields.
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